33 sounds from the computer 10) so that the user can visually, audibly, and/or or tactilely tell which region he or she is contacting on the touchpad. For example, scroll or rate control regions 454a and 454b can be used to provide, input to perform a rate control task, 5 such as scrolling documents, adjusting a value (such as audio volume, speaker balance, monitor display brightness, etc.), or panning/tilting the view in a game or simulation. Region 454a can be used by placing a finger (or other object) within the region, where the upper portion of the region will increase the 10 value, scroll up, etc., and the lower portion of the region will decrease the value, scroll down, etc. In embodiments that can read the amount of pressure placed on the touchpad, the amount of pressure can directly control the rate of adjustment; e.g., a greater pressure will cause a document to scroll 15 faster. The region 454b can similarly be used for horizontal (left/right) scrolling or rate control adjustment of a different value, view, etc. Particular haptic effects can be associated with the control regions 454a and 454b. For example, when using the rate 20 control region 454a or 454b, a vibration of a particular frequency can be output on the touchpad. In those embodiments having multiple actuators, an actuator placed directly under the region 454a or 454b can be activated to provide a more localized tactile sensation for the "active" (currently used) 25 region. As a portion of a region 454 is pressed for rate control, pulses can be output on the touchpad (or region of the touchpad) to indicate when a page has scroll by, a particular value has passed, etc. A vibration can also be continually output while the user contacts the region 454a or 454b. Other regions 456 can also be positioned on the touchpad 450. For example, each of regions 456 can be a small rectangular area, like a button, which the user can point to in order to initiate a function associated with the pointed to region. The regions 456 can initiate such computer functions as run- 35 ning a program, opening or closing a window, going "forward" or "back" in a queue of web pages in a web browser, powering the computer 10 or initiating a "sleep" mode, checking mail, firing a gun in a game, cutting or pasting data from a buffer, saving a file to a storage device, selecting a font, 40 etc. The regions 456 can duplicate functions and buttons provided in an application program or provide new, different functions. Similarly to regions 454, the regions 456 an each be associated with haptic sensations; for example, a region 456 can 45 provide a pulse sensation when it has been selected by the user, providing instant feedback that the function has been selected. For example, a haptic sensation such as a pulse can be output when the user "taps" a finger or object on a region 456, 452, or 454 to make a selection. Similar to physical 50 analog buttons that provide a range of output based on how far the button is pushed, one or more regions 456 can be an analog-like button by providing a proportional, stepped, or analog output based on the pressure the user is exerting on the Furthermore, the same types of regions can be associated with similar-feeling haptic sensations. For example, each word-processor related region 456 can, when pointed to, cause a pulse of a particular strength, while each game-related region 456 can provide a pulse of different strength or a 60 a computer and for outputting forces to a user of the touch vibration. Furthermore, when the user moves the pointing object from one region 454 or 456 to another, a haptic sensation (such as a pulse) can be output on the touchpad 450 to signify that a region border has been crossed For example, a high frequency vibration which quickly decays to zero magnitude can be output when the pointing object enters a designated region. This can be valuable since it provides an indi- 34 cation of the borders to the regions 454 and 456 which the user would not otherwise know. This also allows region reconfiguration of size and/or location and allows the user to quickly learn the new layout haptically. Regions can also be associated with "enclosures" which define areas in a graphical environment and the different haptic sensations which are output when the cursor enters, exits, and is moved within the enclosure and the particular borders having such haptic associations. In addition, the regions are preferably programmable in size and shape as well as in the function with which they are associated. Thus, the functions for regions 456 can change based on an active application program in the graphical environment and/or based on user preferences input to and/or stored on the computer 10. Preferably, the size and location of each of the regions can be adjusted by the user or by an application program, and any or all of the regions can be completely removed if desired. Furthermore, the user is preferably able to assign particular haptic sensations to particular areas or types of areas based on types of functions associated with those areas, as desired. Different haptic sensations can be designed in a tool such as Immersion Studio™ available from Immersion Corp. of San Jose, Calif. It should be noted that the regions 454 and 456 need not be physical regions of the touchpad 450. That is, the entire touchpad surface need merely provide coordinates of user contact to the processor of the computer and software on the computer can designate where different regions are located. The computer can interpret the coordinates and, based on the location of the user contact, can interpret the touchpad input signal as a cursor control signal or a different type of signal, such as rate control, button function, etc. (e.g. a driver program can provide this interpreting function if desired). A local touchpad microprocessor, if present, may alternatively interpret the function associated with the user contact location and report appropriate signal or data to the host processor (such as position coordinates or a button signal), thus keeping the host processor or software ignorant of the lower level processing. In other embodiments, the touchpad 450 can be physically designed to output different signals to the computer based on different regions physically marked on the touchpad surface that are contacted by the user; e.g. each region can be sensed by a different sensor or sensor array. Any of those embodiments described herein which provide haptic feedback to the finger or object of the user that contacts the touchpad or touchscreen may be used with the regions of touchpad 450. While this invention has been described in terms of several preferred embodiments, it is contemplated that alterations, permutations, and equivalents thereof will become apparent to those skilled in the art upon a reading of the specification and study of the drawings. For example, many of the features described in one embodiment can be used interchangeably with other embodiments. Furthermore, certain terminology has been used for the purposes of descriptive clarity, and not to limit the present invention. What is claimed is: - 1. A haptic feedback touch control for inputting signals to control, the touch control comprising: - a touch input device including an approximately planar touch surface operative to provide: 1) a position signal based on a location on said touch surface which said user contacts, said position signal representing said location in two dimensions, and 2) a selection signal indicating a user selection, wherein said computer receives position